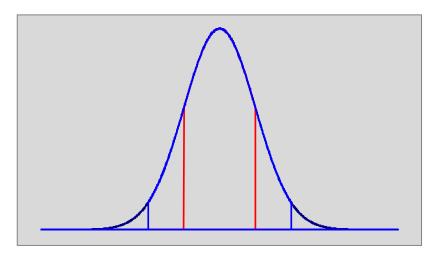

SADCWater PT Chemistry workshop 2018 – Part 3: Uncertainty of Measurement

Maré Linsky 26-27 November 2018

Ensuring valid Analytical Measurements

Ensuring valid Analytical Measurements

Overview


- What is uncertainty of measurement (UoM)?
- Different approaches to evaluate UoM
 - Bottom Up
 - Top Down
- Basic steps
 - Top Down (simplified)
 - Bottom Up
- Expanded uncertainty

Normal Distribution

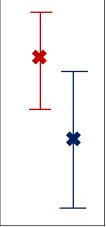
Important Properties

- Approximately 68% (68,27%) of the data lie within $\mu \pm 1\sigma$
- Approximately 95 % (95,45%) of the data lie within $\mu \pm 2\sigma$
- Approximately 99,7 % (99,73%) of the data lie within $\mu \pm 3\sigma$

Measurement Uncertainty vs S_{Rw}

- Within laboratory reproducibility: S_{Rw}
 - Possible variation in analytical results if same sample submitted to the laboratory at different times

Measurement uncertainty


 Possible maximum deviation of a single result from the mean or reference value, if the same sample is submitted to several competent laboratories

What is uncertainty of measurement?

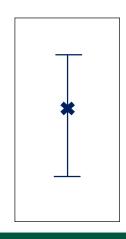
- It tells us something about how much you can trust the measurement i.e. the quality of the measurement
- We need two numbers to quantify uncertainty:
 - The width of the margin of doubt, the confidence interval, and
 - The confidence level, how sure we are that the true value is within the margin of doubt.

 $m = 1000.00250 \pm 0.00050 g^*$

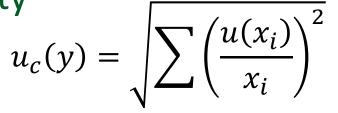
* At level of confidence of 95%

UoM: Basic concepts


- Standard Uncertainty $u(x_i) @ LOC = 68\%$
- Combined Standard Uncertainty

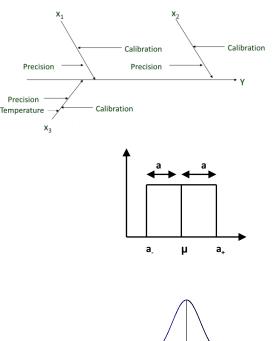

$$u_c(y) = \sqrt{\sum (c_i \cdot u(x_i))^2}$$
 OR

• Expanded Uncertainty $U = k \times u_c(y)$

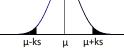

k = Coverage factor associated with:

- Level of Confidence (LOC)
- Degrees of Freedom

Evaluation: UoM

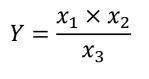


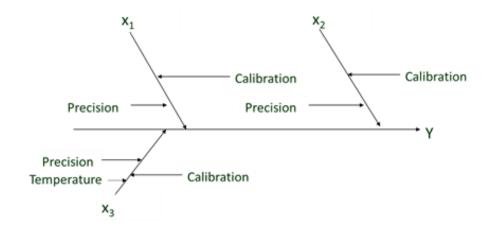
• Several approaches:


- Bottom Up:
 - Based on mathematical model describing the complete measurement procedure
 - Critical to identify all parameters during modelling
 - GUM
- Top Down:
 - Use of method validation and quality control data to estimate the uncertainty of measurement
 - No knowledge of model required
 - Approaches: EURACHEM / CITAC, NORDTEST

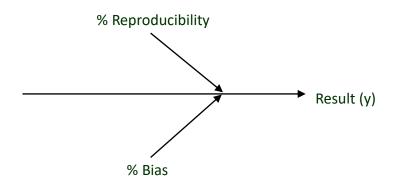
UoM: Basic steps

- Identify the uncertainty sources
 - Equation / Fishbone
- Quantify individual uncertainties
 - Type A & B uncertainties, OR
 - Reproducibility & Bias
- Calculate combined uncertainty
 - GUM, EURACHEM, NORDTEST
- Calculate the expanded uncertainty
 - $U = k x u_c$



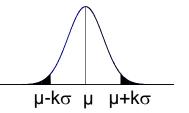


Identify uncertainty sources



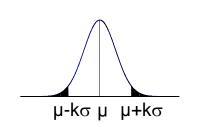
- Mathematical Model
 - Bottom-Up

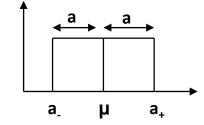
- Method Validation data
 - Top-Down

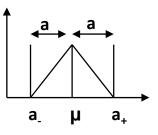

04

Bottom Up Approach

TQM-5134-3

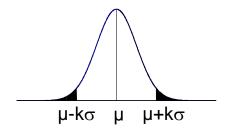

Quantify individual uncertainties

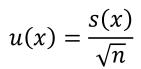

- Type A: Estimate and associated uncertainty are directly determined by the current measurement (Statistics)
 - Normal distribution:



- Type B: Estimate and associated uncertainty are brought into the measurement from external sources (Other sources)
 - Normal distribution Rectangular distribution

Triangular distribution

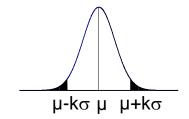


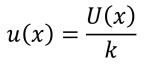


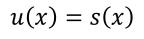
Quantify individual uncertainties

• Type A:

- For component of uncertainty arising from random effects
- Applied when multiple independent observations are made under the same (REPEATABILITY) conditions
- Normal (Gaussian) probability distribution
- Examples:
 - Sample analysed in repeatedly:
 - Same day, same analyst, same instrument






Quantify individual uncertainties (nmis

• Type B:

- For component of uncertainty arising from random effects
- Applied when results originate from REPRODUCIBILTY conditions
- Normal (Gaussian) probability distribution
- Examples:
 - Results from Certificate of Analysis e.g. CRM
 - Level of confidence / Expanded Uncertainty
 - Method validation data from e.g. control charts
 - Standard deviation

Type B: Normal Distribution

• Example:

Standard uncertainty (As concentration) associated with a certified calibration standard solution:

Number	QC1488-20ML
Lot	019373
Solvent (Matrix)	Water, 5% Nitric
Hazard	Toxic, Corrosive
Storage & Handling	Store at room temperature.
Expiration Date	See Sample Label
Certification Date:	11/2/2012

Certified By:

Christopher Rucinski - QA Director

Analyte		Units	Certified ^{1,4} Value k ⁵
Arsenic, As	Traceable to: NIST SRM 3103a Lot 010713	µg/L	19.4 ± 0.423 1.96
Beryllium, Be 1020	Traceable to: NIST SRM 3105a	µg/L	2.71 ± 0.0614 1.96
Cadmium, Cd	Traceable to: NIST SRM 3108 Lot 060531	µg/L	13.7 ± 0.155 1.96

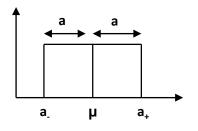
Type B: Normal Distribution

• Example:

- Standard uncertainty (As concentration) associated with a certified calibration standard solution:
- Value:

Conc (As) = 19.4 µg/L

• Standard Uncertainty:


$$u(x) = \frac{U(x)}{k}$$
$$u(x) = \frac{0.423}{2.00} = 0.216 \,\mu g/L$$

Quantify individual uncertainties (nmis

• Type B:

- Typically only range, half-range (*a*), minimum or maximum permissible values provided with no additional information
- Rectangular distribution
- Examples:
 - Manufacturer specifications e.g. balance

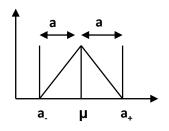
$$u(x) = \frac{a}{\sqrt{3}}$$

Type B: Rectangular distribution

• Example:

- Standard uncertainty associated with the linearity of a mass measurement of 5.0 g:
- Value:
 - m = 5.0 g
- Standard Uncertainty:

$$u(x) = \frac{a}{\sqrt{3}} = \frac{0.0002}{\sqrt{3}} = 0.0012g$$


Model		224	124	613	513	313	213	6102	5102	3102	2102	1102	612
Weighing capacity	g	220	120	610	510	310	210	6,100	5,100	3,100	2,100	1,100	610
Readability	mg	0.1	0.1	1	1	1	1	10	10	10	10	10	10
Repeatability	mg	0.1	0.1	1	1	1	1	10	10	10	10	10	10
Linearity	mg	0.2	0.2	2	2	2	2	20	20	20	20	20	20
Min. sample weight according to USP, typical	g	0.12	0.12	1.5	1.5	1.5	1.5	12	12	12	12	12	12
T								01 0000					

Quantify individual uncertainties

• Type B:

- Typically only range, half-range (*a*), minimum or maximum permissible values provided with indication that central value is more likely
- Triangular distribution
- Examples:
 - Calibration of glassware, e.g. volumetric flasks, pipettes, burettes

$$u(x) = \frac{a}{\sqrt{6}}$$

Combining uncertainties

- Uncertainties must be in same unit, or converted to relative units
- Individual uncertainties (EURACHEM):
 - Rule 1:
 - Individual uncertainties are in the same unit
 - Rule 2
 - For models involving only a product or quotient
- Combine:
 - Continue combining employing rule 1 and 2 until you obtain the combined uncertainty of the result

Combining uncertainties

• Rule 1:

 For models involving only a sum or difference of quantities, e.g. y = (p + q - r..)

the combined standard uncertainty uc(y) is given by:

$$u_c(y) = \sqrt{u(p)^2 + u(q)^2 + u(r)^2 + \cdots}$$

Example: Rule 1

finmisa National Meterslage Institute of South Africa

• Mass by Difference:

$$m_{(sample)} = m_{(boat_{+} sample)} - m_{(boat)}$$
$$u_{c}(m_{(sample)}) = \sqrt{u(m_{(boat_{+} sample)})^{2} + u(m_{(boat)})^{2}}$$

• Combining individual mass contributions:

$$u_{c}(m) = \sqrt{u(m_{(readability)})^{2} + u(m_{(repeatability)})^{2} + u(m_{(linearity)})^{2}}$$

Model		224	124	613	513	313	213	6102	5102	3102	2102	1102	612
Weighing capacity	g	220	120	610	510	310	210	6,100	5,100	3,100	2,100	1,100	610
Readability	mg	0.1	0.1	1	1	1	1	10	10	10	10	10	10
Repeatability	mg	0.1	0.1	1	1	1	1	10	10	10	10	10	10
Linearity	mg	0.2	0.2	2	2	2	2	20	20	20	20	20	20
Min. sample weight according to USP, typical	g	0.12	0.12	1.5	1.5	1.5	1.5	12	12	12	12	12	12
Temperature limits for verified			+10°C +30°C										

Combining uncertainties

• Rule 2

• For models involving only a product or quotient, e.g.

$$y = (p \times q \times ...)$$
 or $y = \frac{p}{(q \times r \times ...)}$

the combined standard uncertainty $u_c(y)$ is given by:

$$u_{\epsilon}(y) = \sqrt{\left(\frac{u(p)}{p}\right)^2 + \left(\frac{u(q)}{q}\right)^2 + \cdots}$$

This formula was incorrect in the original presentation

Combining uncertainties

• Rule 2

• For models involving only a product or quotient, e.g.

$$y = (p \times q \times ...)$$
 or $y = \frac{p}{(q \times r \times ...)}$

the combined standard uncertainty $u_c(y)$ is given by:

$$u_c(y) = y \times \sqrt{\left(\frac{u(p)}{p}\right)^2 + \left(\frac{u(q)}{q}\right)^2 + \cdots}$$

This is the correct version of the formula.

Example: EURACHEM Rule 2

• Concentration of Mg-calibration standard:

 $Conc(Mg) = \frac{Conc(Stock) \times V(aliq)}{V(Fin Vol)}$

$$u_c(Conc(Mg)) = \sqrt{\left(\frac{u(Conc_{(Stock)})}{Conc_{(Stock)}}\right)^2 + \left(\frac{u(V_{(aliq)})}{V_{(aliq)}}\right)^2 + \left(\frac{u(V_{(Fin Vol)})}{V_{(Fin Vol)}}\right)^2}$$

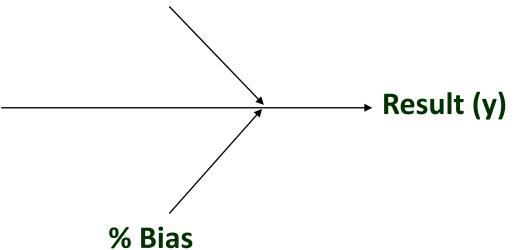
Combining uncertainties

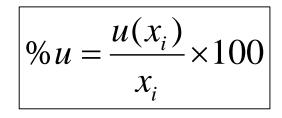
- Uncertainties must be in same unit, or converted to relative units
- Individual uncertainties (EURACHEM):
 - Rule 1:
 - Individual uncertainties are in the same unit
 - Rule 2
 - For models involving only a product or quotient
- Combine:
 - Continue combining employing rule 1 and 2 until you obtain the combined uncertainty of the result

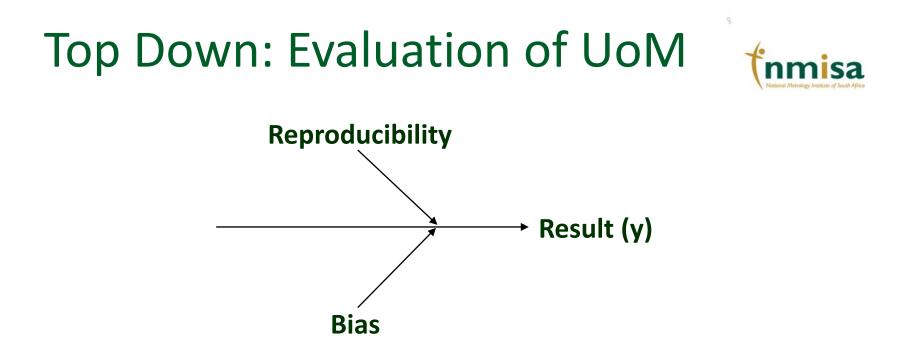
04

• Top Down Approach

TQM-5134-3


Top Down: Evaluation of UoM



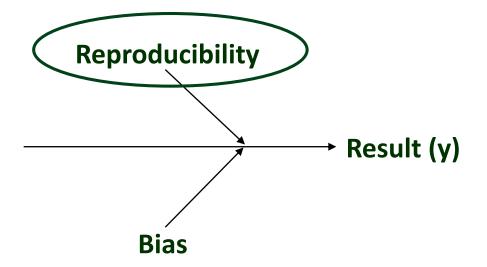

• Top Down:

- % Reproducibility
- % Method and Laboratory Bias

% Reproducibility

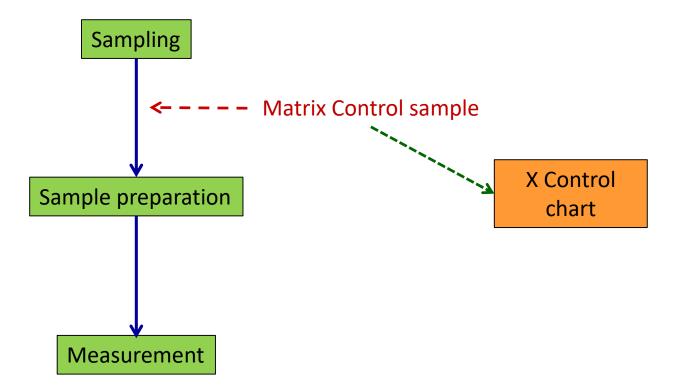
- Provided that reproducibility and bias data is representative:
 - Different stock standard solutions
 - Different batches of reagents
 - Re-calibration of instruments
 - Representative period of time ideally 1 year
 - Minimum number of results: 50

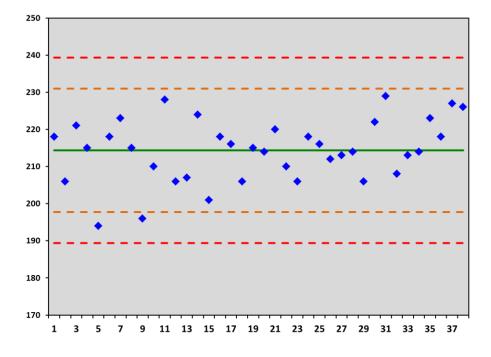
Top Down: Evaluation of UoM



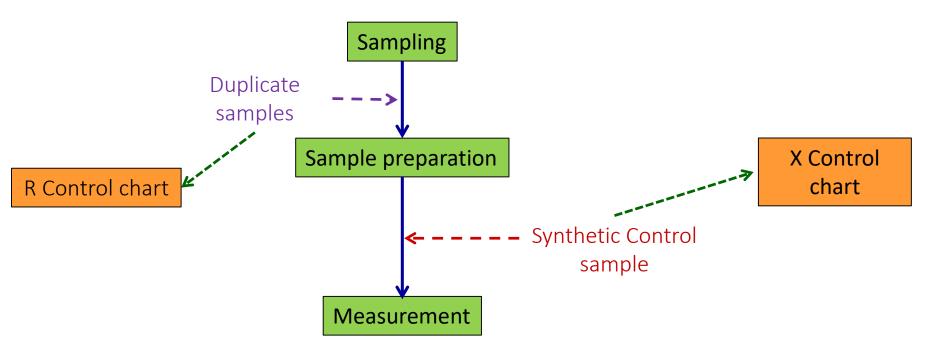
- Within laboratory reproducibility, R_w
 - Control sample covering the whole analytical process
 - Control sample not covering the whole process, matrix different

- Method Validation: Method and Laboratory Bias
 - Certified Reference Materials
 - Interlaboratory comparisons / Proficiency testing
 - Recovery experiments




• I: Control sample covering the whole analytical process

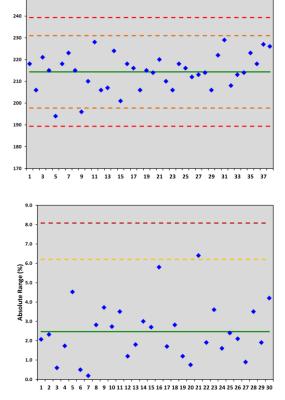
Within laboratory reproducibility, R

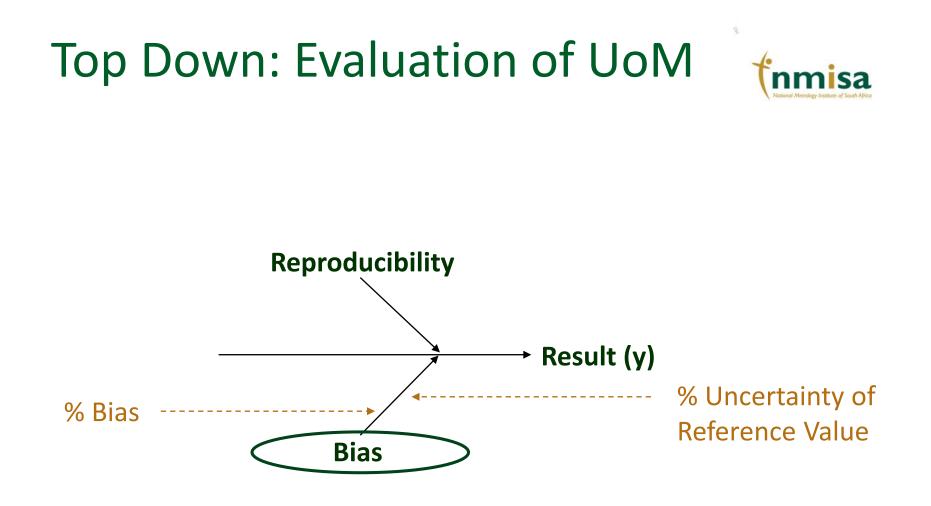

- I: Control sample covering the whole analytical process
 - Mean control chart

$$\% R_w = \frac{s_x}{\bar{x}} \times 100$$

• II: Control sample not covering the whole process, matrix different

- II: Control sample not covering the whole process, matrix different
 - Mean control chart:

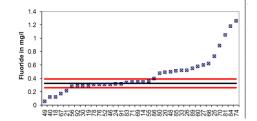

$$\% S_R = \frac{S_x}{\bar{x}} \times 100$$


• Range control chart:

 $%s_r = \frac{MeanRange}{d_2} \times 100$

• Within laboratory reproducibility, R_w

$$\% R_w = \sqrt{(\% S_R)^2 + (\% S_r)^2}$$


• Combination of:

- Bias, % Bias
- Uncertainty associated with the reference value, % u_c(Ref)

• Experimentally:

- Certified Reference Materials
- Interlaboratory comparisons / Proficiency testing
- Recovery experiments

• Bias, % Bias

$$\%Bias = \frac{C_{meas} - C_{Ref}}{C_{Ref}} \times 100$$

Combined Bias (several CRMs/PTs/Recovery experiments)

$$RMS_{bias} = \sqrt{\frac{\sum (bias_i)^2}{n}}$$

- Uncertainty associated with the reference value, %u_c(Ref)
 - CRM:
 - Expanded uncertainty, U(x):
 - %Standard uncertainty, %u(x):

$$u(x) = \frac{U(x)}{k}$$

% $u(x) = \frac{u(x)}{x} \times 100$

- Proficiency test:
 - Reproducibility all participants: %S_R
 - Number of participants: n
- Recovery (EURACHEM):
 - %u_c(spike)

• Combination of:

- Bias, % Bias
- Uncertainty associated with the reference value, $\% u_c(Ref)$

$$u_{bias} = \sqrt{RMS_{bias}^2 + u(C_{ref})^2}$$

Top Down: Combining Uncertainty

- Calculate Combined Standard Uncertainty (u_c):
 - Combine Reproducibility and Bias components
 - Reproducibility (R_w): From control samples and other estimations
 - Bias (u_{bias}): From CRM, PT or recovery tests

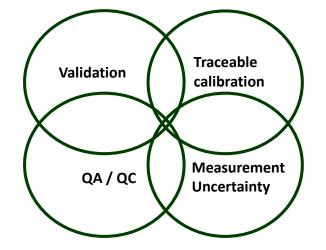
$$\% u_{c} = \sqrt{\% u (R_{w})^{2} + (\% u_{bias})^{2}}$$

Evaluation: UoM

- Top Down:
 - Determine the expanded uncertainty (U):

$$U = k \times u_c(y)$$

 Assume k=2 for an approximate level of confidence of 95% with assumed effective degrees of freedom > 30


Which approach to use?

- Bottom Up (GUM, EURACHEM/CITAC)
 - Mathematical model needed
 - Complex calculations
 - Smaller uncertainties
- Top Down (NORDTEST, EURACHEM/CITAC)
 - No model needed
 - Simpler combination of data already available in accredited laboratory
 - Uncertainties are larger, but perhaps more realistic?
- Fit for purpose?

Conclusions

- Method Validation
 - One part of ensuring valid, traceable results
 - Fit-for-purpose
 - Performance characteristics
 - Acceptance criteria
- Quality control
 - Internal processes
 - External processes
- Uncertainty of Measurement
 - Bottom Up
 - Top Down

Trueness: Outlier testing

- View results graphically
- Grubbs' test
 - Small number of samples
 - ISO recommended

$$G = \frac{\left|SuspectValue - \overline{x}\right|}{s}$$

- Dixon's test (Q-test)
 - Sample sizes: n = 3 7

 $Q = \frac{|SuspectValue - NearestValue|}{Larg\ estValue - SmallestValue}$

n	Q _{crit} CL at 90%	Q _{crit} CL at 95%	Q _{crit} CL at 99%
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568

The Dixon test can be used to test for a single outlier in a univariate data set. This test is primarily used for small data sets (Dataplot limits the sample to be between 3 and 30).

Specifically, given a set of ordered observations Y1, Y2, ..., YN, the Dixon test is computed as follows:

Sample Size	Test for Minimum	Test for Maximum
3 ≤ N ≤ 7	$(Y_2 - Y_1)/(Y_N - Y_1)$	$(Y_{N} - Y_{N-1}) / (Y_{N} - Y_{1})$
$8 \le N \le 10$	$(Y_2 - Y_1)/(Y_{N-1} - Y_1)$	$(Y_{N} - Y_{N-1})/(Y_{N} - Y_{2})$
$11 \le N \le 13$	$(Y_3 - Y_1) / (Y_{N-1} - Y_1)$	$(Y_{N} - Y_{N-2})/(Y_{N} - Y_{2})$
$14 \le N \le 30$	$(Y_3 - Y_1)/(Y_{N-2} - Y_1)$	(Y ₃ -Y ₁)/(Y _{N-2} -Y ₁)

https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/dixon.htm

Dixon Test

Dixon's Q test, or just the "Q Test" is a way to find outliers in very small, <u>normally distributed</u>, data sets. Small data sets are usually defined as somewhere between 3 and 7 items

$$Q_{exp} = \frac{x_2 - x_1}{x_n - x_1}$$

Finding the Q statistic for different sample sizes (n) of between 8 and 30 (in Step 2 above):

8< n >10: use R₁₁: $r_{11} = \frac{x_2 - x_1}{x_{n-1} - x_1}$ 11< n >13: use R₂₁. $r_{21} = \frac{x_3 - x_1}{x_{n-1} - x_1}$ 14< n >30: use R₂₂. $r_{22} = \frac{x_3 - x_1}{x_{n-2} - x_1}$

https://www.statisticshowto.datasciencecentral.com/dixons-q-test/

References

- Eurachem / CITAC Guides:
 - The Fitness for Purpose of Analytical Methods, 2007
 - Traceability in Chemical Measurement, 2003
 - Quantifying Uncertainty in Analytical Measurement
 - The Selection and Use of Reference Materials
- Statistics and Chemometrics for Analytical Chemistry, JN Miller, JC Miller
- Validation of Analytical Methods, Ludwig Huber, Agilent
- GUM: Guide to the expression of uncertainty in measurement,
- Internal Quality control, NORDTEST Report TR 569
- Handbook for Calculation of Measurement Uncertainty in Environmental Laboratories, NORDTEST Report TR 537
- MUKit software, NORDTEST

Sodium in Food: Proficiency testing scheme

Round 1	Savoury Stock Powder (Oct 2018)	
Round 2	Bread (Dec 2018)	
Round 3	Instant Noodles (Feb 2019)	
Round 4	Fat Spread (Apr 2019)	
Round 5	Flavoured Snack/Crisp (May 2019)	
Round 6	Cured processed meat product (Jul 2019)	

Sodium in Food: Proficiency testing scheme

Main parameter: Salt (sodium) content				
Optional Parameters:				
Iron and Zinc	Moisture			
Protein	Fat			
Total sugar	Cholesterol			
Dietary fibre	Vitamins A, B1, B2, B3,			
	B6, folic acid			
Energy				

We measure what matters

anhunhun

Thank you

Maré Linsky mlinsky@nmisa.org